Stein, G. S., Hunter, G., and Lavie, L. (1974a), Biochem. J. (in press).

Stein, G. S., Spelsberg, T. C., and Kleinsmith, L. J. (1974b), Science 83, 817.

Stein, G. S., and Thrall, C. L. (1973), FEBS (Fed. Eur. Biochem. Soc.) Lett. 32, 41.

Swinehart, J. L., Lin, W. S., and Cerutti, P. A. (1974), *Radiat*. *Res.* (in press).

Van der Schans, G. P., Bleichrodt, J. F., and Blok, J. (1973), Int. J. Radiat. Biol. 23, 133.

Wagner, T., and Spelsberg, T. C. (1971), Biochemistry 10, 2599. Wagner, T., and Vandegrift, V. (1972), Biochemistry 11, 1431.

Reaction of Cytidine with Ethylating Agents†

L. Sun and B. Singer*

ABSTRACT: The products of the reaction of cytidine and deoxycytidine with stoichiometric amounts of ethyl iodide in anhydrous solution, with or without K_2CO_3 , were isolated and characterized. They included 3-ethylcytidine, N^4 -ethylcytidine, $3,N^4$ -diethylcytidine, N^4 -diethylcytidine, and possibly $3,N^4,N^4$ -triethylcytidine as well as small amounts of unidentified products. The extent of reaction was 25–50%. Data are presented for the ultraviolet absorption spectra and acid dissociation constants of these derivatives. 3-Ethylcytidine, N^4 -ethylcytidine, and N^4,N^4 -diethylcytidine were obtained after neutral aqueous reaction of cytidine and poly(C) with [14 C]-ethyl methanesulfonate and [14 C]diethyl sulfate. One of the unidentified derivatives was a major product of the reaction of cytidine with ethyl methanesulfonate and diethyl sulfate. The extent of total ethylation with these reagents did not

exceed 0.5%. The reaction of cytidine in poly(dG) poly(dC) with [¹⁴C]ethyl methanesulfonate in neutral aqueous solution was very limited and the products were 3-ethylcytidine and N^4 -ethylcytidine in approximately equal amounts. Methylation of cytidine and deoxycytidine with stoichiometric amounts of methyl iodide, in anhydrous solution containing K_2CO_3 , led to the almost quantitative formation of 3-methylcytidine only. When the amount of reagent and reaction time were increased, $3,N^4$ -dimethylcytidine and $3,N^4,N^4$ -trimethylcytidine were found. Similarly, 3-methylcytidine, 3-ethylcytidine, and N^4 -ethylcytidine could be exhaustively methylated or ethylated with the alkyl iodides to form the corresponding derivatives. The direct ethylation of the exocyclic nitrogen of cytidine has not previously been observed in neutral aqueous solution.

Alkylation of cytidine at the 3 position has been shown to be mutagenic in intact TMV (Singer and Fraenkel-Conrat, 1969b) and to cause mispairing when copolymers of cytidine with 3-methylcytidine or 3-ethylcytidine were used as templates by DNA-dependent RNA polymerase (Singer and Fraenkel-Conrat, 1970; Ludlum, 1970; Ludlum and Magee, 1972). The importance of these observations has increased as it has become more apparent that the generally predominant reaction of alkylating agents with the N-7 of guanosine is of little or no importance in mutagenesis or carcinogenesis (Swann and Magee, 1968, 1971; Loveless and Hampton, 1969; Ludlum, 1970; Lijinsky et al., 1972; Goth and Rajewsky, 1972; Kleihues and Magee, 1973; Craddock, 1973).

In the previous paper of this series the reaction of guanosine with several ethylating and methylating agents was examined and it was concluded that the nature of the alkylating group (ethyl vs. methyl) played an important role in determining the site and rate of alkylation (Singer, 1972). This approach has been continued in the present study of the alkylation of cytidine in which we present data on the characterization of alkyl derivatives formed after nonaqueous reaction with ethyl iodide and methyl iodide, as well as the detection of products upon alkylation with the less reactive ethyl methanesulfonate (EtMeSO₃) and diethyl sulfate (Et₂SO₄) in neutral aqueous solution. To our knowledge, the only previously described

derivatives of cytidine found after direct alkylation are 3-methylcytidine (Brookes and Lawley, 1962), 3-benzylcytidine (Brookes *et al.*, 1968), 3-(2-morpholinoethyl)deoxycytidine, and $3,N^4$ -di(2-morpholinoethyl)deoxycytidine (Price *et al.*, 1968).

The present paper presents data on the isolation and characterization of products of the reaction of cytidine and ethyl iodide in nonaqueous media. These were 3-ethylcytidine, N^4 -ethylcytidine, $3,N^4$ -diethylcytidine, N^4,N^4 -diethylcytidine and possibly $3,N^4,N^4$ -triethylcytidine. The products of the reaction of cytidine, poly(C), and poly(dG) poly(dC) in aqueous solution at neutrality with 14 C-labeled diethyl sulfate and 14 C-labeled ethyl methanesulfonate were found to include 3-ethylcytidine, N^4 -ethylcytidine, and N^4,N^4 -diethylcytidine. The relationship of the new finding, that the amino group of cytidine is alkylated at neutrality, to possible biological effects is discussed.

Experimental Section

Reaction of Cytidine with Alkyl Iodides. (a) One-hundred milligrams of cytidine or deoxycytidine was dissolved in 1 ml of dimethyl sulfoxide containing 60 mg of anhydrous K_2CO_3 . Alkyl iodide (25 μ l) was added and the mixture was stirred at room temperature. After 2 hr, 20 mg of K_2CO_3 and 10 μ l of alkyl iodide were added. Stirring was continued for an additional 2 hr. The reaction mixtures were filtered through a 2-cm Celite column in a Pasteur pipet. The filtrate was then subjected to electrophoresis and chromatography to separate the reaction products. (b) The reaction conditions

[†] From the Space Sciences Laboratory and Department of Molecular Biology and Virus Laboratory, University of California, Berkeley, California 94720. Received September 28, 1973. This investigation was supported by Grant No. CA 12316 from the National Cancer Institute.

TABLE I: RF Values of Alkylated Cytidines.

	$R_F{}^a$				
	Solvent		Solvent		
	Α	Solvent B	C		
Cytidine derivatives					
3-Ethyl-	0.70	0.24	0.69		
N4-Ethyl-	0.74	0.49	0.69		
N^4 , N^4 -Diethyl-		0.70			
3,N4-Diethyl-		0.55			
$3,N^4,N^4$ -Triethyl-		0.31			
Cytidine	0.51	0.15	0.47		
Unidentified X		0.37			
Unidentified Y		$0.46(0.24)^{b}$			
Unidentified Z		0.59 (0.29)			
3-Methyl-	0.60	0.11			
3,N⁴-Dimethyl-		0.43			
$3,N^4,N^4$ -Trimethyl-		0.17			
Deoxycytidine derivatives	3				
3-Ethyl-	0.76	0.39	0.36		
N4-Ethyl-	0.83	0.70	0.36		
Deoxycytidine	0.65	0.28	0.20		
Uridine derivatives					
3-Ethyl-		0.62			
3-Methyl-		0.44			
Uridine	0.73	0.30			

^a See Experimental Section for details; solvent A, isopropyl alcohol- H_2O (70:30, v/v); solvent B, butanol-ethanol- H_2O (80:10:25, v/v); solvent C, isopropyl alcohol- H_2O (68:17:15, v/v). ^b R_F 's in parentheses are for the corresponding methylated derivatives.

were identical with (a) except that no K_2CO_3 was added. (c) Reaction mixtures prepared as in (a) were reacted with 400 μ l of alkyl iodide in 2 ml of dimethyl sulfoxide containing 60 mg of K_2CO_3 for 18 hr at 37°. Alternatively 10 absorbancy units of the isolated reaction products from reaction (a), 3-methylcytidine, 3-ethylcytidine, and N^4 -ethylcytidine were individually reacted with 35 μ l of alkyl iodide in 0.1 ml of dimethyl sulfoxide containing 6 mg of K_2CO_3 at 37° for 18 hr.

Reaction of Cytidine, Poly(C), and $Poly(dG) \cdot Poly(dC)$ with [14C]Ethyl Methanesulfonate and [14C]Diethyl Sulfate. (a) Cytidine (50 mg) in 2 ml of H₂O was reacted at pH 7.0 (the pH was maintained by the addition of NaOH in a Radiometer pH-Stat) with 10 µl of [14C]Et₂SO₄ (specific activity 0.02 Ci/mol) dissolved in 40 µl of dimethyl sulfoxide. After 8-hr reaction an additional 10 μl of [14C]Et₂SO₄ in 40 μl of dimethyl sulfoxide was added and the reaction was continued for a total of 24 hr at room temperature. The cytidine was freed of excess reagent by repeated ether extraction. The ¹⁴C-ethylated cytidine (as well as the ¹⁴C-labeled nucleosides from the polymers in sections b and c) was mixed with a sufficient carrier amount of the reaction mixture from cytidine and ethyl iodide so that the various possible ethylated cytidines could be identified and quantitated after electrophoresis and chromatography.

The same reaction conditions were used for the reaction with [14C]EtMeSO₃ except that the EtMeSO₃ (specific activity 1 Ci/mol) was dissolved in four volumes of ethanol.

(b) Poly(C) (1 mg; Miles Laboratories) was reacted with 2 μl of [¹4C]Et₂SO₄ [specific activity 0.2 Ci/mol, dissolved in four volumes of dimethyl sulfoxide] in 0.4 ml of 0.5 м pH 7

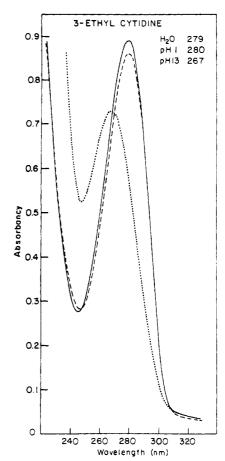


FIGURE 1: Ultraviolet absorption spectra of 3-ethylcytidine in water (—), 0.1 N HCl (--), and 0.1 N KOH (----). The absorption maximum at each pH is given in the figure.

cacodylate buffer for 18 hr at room temperature, the pH remaining constant. The polymer was precipitated three times with three volumes of ethanol at 0° and the final precipitate was washed with cold ethanol. The precipitate was dissolved in 0.2 ml of 0.01 M pH 7.6 Tris buffer and 0.1 mg of ribonuclease was added. After 1 hr at 37°, MgCl₂ was added to a concentration of 0.01 M and the polymer was further digested with 0.1 mg of snake venom phosphodiesterase and 0.1 mg of alkaline phosphatase for 18 hr at 37°. The digestion was judged complete since no absorbancy or counts were found at the origin when the digest was chromatographed. The same reaction and digestion conditions were used for the reaction with [14C]EtMeSO₃ except the specific activity was 1 Ci/mol.

(c) Approximately 12 absorbancy units of poly(dG)-poly(dC) (Miles Laboratories) in 2 ml of H_2O was reacted at pH 7.0 in the pH-Stat with [14C]EtMeSO₃ (specific activity 1 Ci/mol) under the same conditions as for cytidine in section a. The polymer was precipitated three times with three volumes of ethanol at 0° to free it of excess reagent, then depurinated by heating in 1 N HCl at 100° for 10 min. The depurinated polymer was centrifuged, washed several times with 0.1 N HCl, and redissolved in 0.1 ml of 0.5 M ammonium bicarbonate containing 0.01 M MgCl₂. DNase (50 μ g) was added and the sample was digested at 37° for 30 min. Snake venom phosphodiesterase (25 μ g) and alkaline phosphatase (30 μ g) were added and the digestion was continued 4 hr at 37°. The same quantities of phosphodiesterase and phosphatase were again added and the digestion was allowed to continued 18 hr at 37°.

Methods for the Separation and Characterization of Alkylated Cytidines. Paper electrophoresis on Whatman No. 3MM in

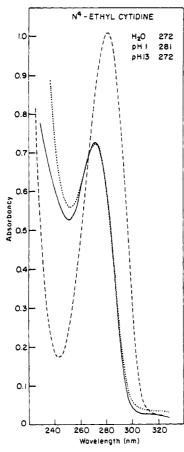
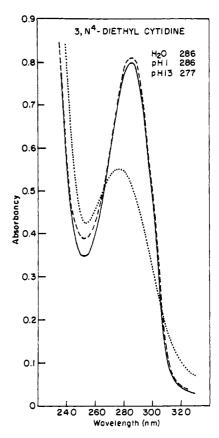


FIGURE 2: Ultraviolet absorption spectra of N^4 -ethylcytidine in water (—), 0.1 N HCl (--), and 0.1 N KOH (·····). The absorption maximum at each pH is given in the figure.


0.05 M ammonium formate buffer (pH 5.7) separates the products with quaternary N and pK higher than 5.7 (the 3-, $3,N^4$ -, or $3,N^4,N^4$ -alkylcytidines) from cytidine and N^4 - or N^4,N^4 -alkylcytidine whose pK's are lower than 5.7.

After elution of the two areas of the electropherogram, termed "high pK" and "low pK," further separation was accomplished by descending paper chromatography on Whatman No. 3MM in either of two solvent systems. Solvent A was isopropyl alcohol- H_2O (7:3, v/v). Solvent B was butanolethanol- H_2O (8:1:2.5, v/v). A third solvent system C was also used occasionally as an additional means of resolving cytidine or deoxycytidine and their N^4 -ethyl derivatives. Solvent C was isopropyl alcohol- $HCl-H_2O$ (68:17:15, v/v). R_F values are given in Table I including those of 3-methyland 3-ethyluridine which are deamination products of 3-alkylcytidine.

Chromatography in butanol-0.8 M boric acid-ammonia (100:13.5:0.4) (Al-Arif and Sporn, 1972) was used to determine whether any derivatives were alkylated on the ribose moiety.

Paper electropherograms or chromatograms were observed under ultraviolet light to detect various derivatives. After elution with water by capillarity, the spectra were plotted using a Cary 15 recording spectrophotometer. HCl (6 N) was added to the same solution to a final concentration of 0.1 N and the spectra were replotted. KOH (6 N) was added to a final concentration of 0.1 N and the spectra were again plotted. The spectra of several ethylcytidines are shown in Figures 1–5.

A spectrophotometric method was used for the determination of the acid dissociation constants, similar to that of

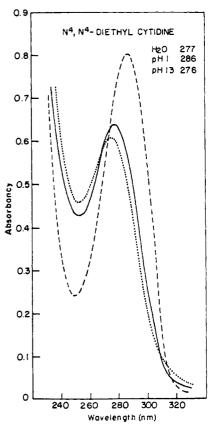


FIGURE 4: Ultraviolet absorption spectra of N^4 , N^4 -diethylcytidine in water (—), 0.1 N HCl (--), and 0.1 N KOH (·····). The absorption maximum at each pH is given in the figure.

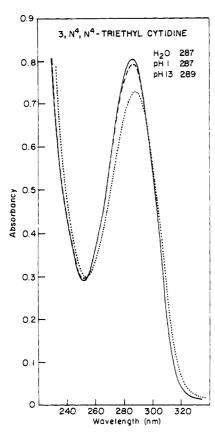


FIGURE 5: Ultraviolet absorption spectra of presumed $3,N^4,N^4$ -triethylcytidine in water (—), 0.1 N HCl (--), and 0.1 N KOH (····). The absorption maximum at each pH is given in the figure.

Singer (1972), except that the pH range was from pH 1 to 13. Apparent pK values are given in Table II.

Treatment with nitrous acid was used as a method of detecting primary amino groups. Alkylated cytidines were reacted with 1 N NaNO₂ in 25% acetic acid for 2 days at room temperature (Kuśmierek *et al.*, 1973), or with 1 N NaNO₂ in 0.12 M pH 4 acetate buffer for 4 days at room temperature, and chromatographed in solvent B and the spectra of the uvabsorbing products were studied. Alkylcytidines were converted to the corresponding cytosines by digestion in 70% perchloric acid at 100° for 1 hr.

Materials. [14C]Ethyl methanesulfonate (5.3 Ci/mol) was obtained from Amersham/Searle. [14C]Diethyl sulfate (0.9 Ci/mol) was obtained from ICN. Both reagents were diluted with unlabeled reagent before use. 3-Methylcytidine was obtained from Calbiochem. All enzymes used were obtained from Worthington Biochemical Corp.

Results

Reaction of Cytidine and Deoxycytidine with Ethyl Iodide and Methyl Iodide. The reaction of cytidine with ethyl methanesulfonate or diethyl sulfate was first attempted since we wanted to compare the reaction products of EtMeSO₃ which is both mutagenic and carcinogenic (Singer and Fraenkel-Conrat, 1969c; Swann and Magee, 1969) with those of Et₂SO₄ which appears to be neither. However, in confirmation of Ludlum (1970), the rate and extent of reaction with EtMeSO₃ and Et₂SO₄ are extremely low so that it did not appear feasible to study these cytidine alkylations except with a radioactive label. For this purpose one needs known derivatives to use as markers. We therefore reacted cytidine (and deoxycytidine) with approximately stoichiometric amounts

TABLE II: Acidic Dissociation Constants of Alkylcytidines.^a

	pK_a
Cytidine derivatives	
3-Ethyl	8.4
N ⁴ -Ethyl	4.2
3-Methyl	8.3
Deoxycytidine derivatives	
3-Ethyl	8.6
N ⁴ -Ethyl	4.2

^a See Experimental Section for experimental procedure.

of ethyl iodide and methyl iodide in dimethyl sulfoxide containing K_2CO_3 , conditions favoring considerably more reaction than obtainable with EtMeSO₃ and Et₂SO₄.

After reaction with methyl iodide, 88% of the cytidine was converted to 3-methylcytidine, with 2.5% 3-methylcytidine also found as a deamination product. Under the same conditions, ethyl iodide yielded 15% 3-ethylcytidine, 5% N^4 -ethylcytidine, and smaller amounts of N^4,N^4 -diethylcytidine, and unidentified products. The experimental evidence for the identification of these alkylcytidines is given in a later section of Results.

Although the evidence for direct aminoalkylation by ethylating as contrasted to methylating agents seemed clear, the alkylation of cytidine was repeated in dimethyl sulfoxide in the absence of K₂CO₃, conditions more similar to the aqueous conditions used by other investigators for alkylating cytidine (Brookes and Lawley, 1962; Brookes et al., 1968; Price et al., 1968; Singer and Fraenkel-Conrat, 1969a; Ludlum, 1970). This reaction proceeded more rapidly and yielded 48 % 3ethylcytidine and 2.3 % N4-ethylcytidine. In contrast, methylation under the same conditions yielded 96% 3-methylcytidine with no N^4 -methylcytidine detected. The anhydrous neutral reaction with ethyl iodide also produced three additional unidentified products ranging from 3 to 0.4% of the total reaction. These three unidentified products (termed X, Y, and Z) were also obtained when cytidine was reacted with an excess amount of ethyl iodide. Their R_F values and spectral data are given in Tables I and III. Methylation produced two corresponding additional products (0.5 and 0.2%).

To test the possibility that N^4 -ethylcytidine resulted from a rearrangement of 3-methylcytidine, in a manner analogous to that known for the formation of N^8 - from 1-alkyladenosine, control experiments were performed by treating 3-methyland 3-ethylcytidine in dimethyl sulfoxide containing K_2CO_3 for up to 18 hr at 37°. No new products were detected except a small amount of 3-alkyluridine due to deamination. The deamination of 3-methylcytidine was slightly more rapid than that of 3-ethylcytidine. 3-Methyl- and 3-ethylcytidine as well as N^4 -ethylcytidine were also completely stable in 1 N HCl at 100° for 1 hr.

The striking qualitative difference in the reactivity of the amino group of cytidine to ethylation as contrasted to methylation was investigated by reacting 3-methylcytidine and 3-ethylcytidine with excess amounts of alkyl iodide, all in dimethyl sulfoxide containing $K_2 CO_3$, for 18 hr at 37°. These reaction conditions are extreme when compared to the reaction of stoichiometric amounts of alkyl iodides with cytidine at room temperature for 4 hr. Under these conditions, both 3-methylcytidine and 3-ethylcytidine reacted slowly with both

TABLE III: Spectral Identification of Alkylcytidines.a

	Ne	Neutral		Acidic		sic		
Compound	λ_{max} (nm)	λ _{min} (nm)	λ_{max} (nm)	λ _{min} (nm)	λ_{max} (nm)	$\lambda_{m in}$ (nm)	Source ^b	
Cytidine			280	241	271	249	Kuśmierek et al. (1973)	
3-Ethylcytidine 3-Methylcytidine 3-Methylcytidine	279 278 278	246 243 243	280 278 278	247 243 243	267 267 267	248 245 246	Experimental Experimental Calbiochem	
3-Ethyldeoxycytidine N ⁴ -Ethylcytidine ^d N ⁴ -Methylcytidine ^d N ⁴ -Ethyldeoxycytidine N ⁴ -Methyldeoxycytidine	280 272 270 270 270	245 252 250 251 248	280 281 280 279 282	245 244 242 247 242	268 272 273 272	247 253 250 253	Experimental Experimental Szer and Shugar (1966) Experimental Wempen et al. (1961)	
N^4 , N^4 -Diethylcytidine N^4 , N^4 -Dimethylcytidine N^4 , N^4 -Dimethylcytidine	277 278 278	252 238 239	286 287 285	249 246 246	276 279	252 247	Experimental Wempen <i>et al.</i> (1961) Szer and Shugar (1966)	
3,N ⁴ -Diethylcytidine 3,N ⁴ -Dimethylcytidine 3,N ⁴ -Di(DEAE)deoxycytidine 1,3,N ⁴ -Trimethylcytosine 3,N ⁴ ,N ⁴ -Triethylcytidine	286 286 287	253 249 252	286 286 284 287 287	252 249 245 248 252	277 277 289	253 249 253	Experimental Experimental Price et al. (1968) Price et al. (1968) Experimental	
Cytosine	276	238	276	238	281	249	P-L Biochemicals	
3-Ethylcytosine 3-Methylcytosine			275 274	242 240	294 294	254 250	Experimental Brookes and Lawley (196)	
<i>N</i> ⁴ -Ethylcytosine <i>N</i> ⁴ -Methylcytosine	277	240	277 277	244 240	284 286	253 256	Experimental Szer and Shugar (1966)	
N^4 , N^4 -Dimethylcytosine N^4 , N^4 -Dimethylcytosine	275 272	235-250 245-250	283 282	242 243	290 289	260 258	Szer and Shugar (1966) Wempen et al. (1961)	
3-Ethyluridine 3-Methyluridine ^h 3-Methyluridine	262 262	245 240	261 262 263	245 238 233	264 263 262	247 241 233	Experimental Experimental Hall (1971)	
Unidentified ethyl-X Unidentified ethyl-Y Unidentified ethyl-Z	263 270 276	246 243 246	263 270 277	247 243 246	267 271 269	250 248 247	Experimental Experimental Experimental	

^a The spectra of the experimental and commercial samples were plotted in H_2O , 0.1 n HCl, and 0.1 n KOH. The corresponding literature data was obtained under a variety of neutral, acidic, and basic conditions. ^b Experimental samples were isolated from paper chromatograms after prior electrophoretic separation. ^c All O'-alkyl derivatives have identical spectra to that of cytidine (Tazawa et al., 1972; Kuśmierck et al., 1973). ^d N⁴-Methyl-2'-O-methylcytidine (Robins and Naik, 1971) or N⁴-methyl-2',3',5'-O-trimethylcytidine (Kuśmierck et al., 1973) exhibit in acidic and neutral solution an λ_{max} 280–281 nm and in basic solution, λ_{max} 271 nm. ^c N⁴,N⁴-Dimethyl-2'-O-methylcytidine (Robins and Naik, 1971) exhibits in acidic solution λ_{max} 287 nm and in basic solution, λ_{max} 278 nm. ^f DEAE is the abbreviation for 2-diethylaminoethyl. ^g This compound was isolated in extremely small amounts and the identification is tentative. ^h Obtained by deamination of authentic 3-methylcytidine.

alkyl iodides to form small amounts of 3,N⁴-di-, and presumed 3,N⁴,N⁴-trialkyl derivatives. N⁴-Ethylcytidine also reacted slowly with both alkyl iodides to form the 3,N⁴-,N⁴, and presumed 3,N⁴,N⁴ derivatives. These experiments indicate that both the 3 and N⁴ positions are available to both methylation and ethylation but that owing to the high reactivity of the 3 position to methylation this group is preferentially methylated, while the comparative slowness of 3-ethylation permits substantial reaction at the less preferred amino group.

Reaction of Cytidine, Poly(C), and $Poly(dG) \cdot Poly(dC)$ with $[^{14}C]Et_{2}SO_{4}$ and $[^{14}C]Et_{2}MeSO_{3}$. With the information

and markers gained from the study of the reaction of alkyl iodides with cytidine, it was possible to study the products of reaction of cytidine, as monomer or polymer, with the biologically interesting ethylating agents, diethyl sulfate and ethyl methanesulfonate. These reactions were all performed in neutral aqueous solution, the pH being maintained at 7.0 in a pH-Stat or by cacodylate buffer. After removal of excess reagent and, in the case of polymers, enzyme digestion to nucleosides, enough of the cytidine–ethyl iodide reaction mixture was added to act as unlabeled ultraviolet-absorbing markers, and the various alkylcytidines were separated by chromatography, either alone or after electrophoresis.

The yields of each derivative from ethylated cytidine and poly(C) as per cent of total recovered ¹⁴C are shown in Table IV. Figure 6 shows the radioactivity profiles, from a

 $^{^1}$ When cytidine is reacted with ethyl iodide under the same conditions, a maximum of $5\,\%$ ribose alkylation is found in addition to the base alkylated derivatives.

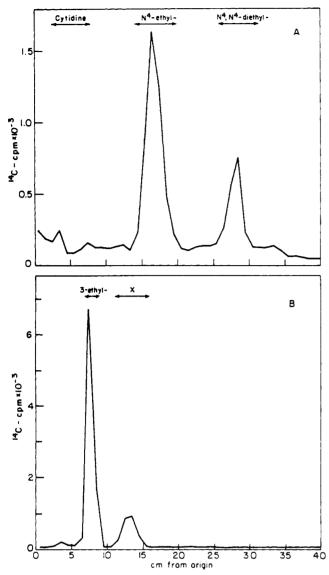


FIGURE 6: Radioactivity profiles of chromatograms of electrophoretic fractions of cytidine reacted with [14C]EtMeSO₃. Cytidine (50 mg) was reacted at pH 7.0 w.th a total of 20 μ l of [14C]EtMeSO₃ (specific activity 1 Ci/mol) for 24 hr at room temperature. Paper electrophoresis of 20% of the ether-extracted solution was in 0.05 m ammonium formate buffer at pH 5.7. (A) Twenty-five per cent of the electrophoretic "low pK" fraction was chromatographed in solvent B. (B) Three per cent of the electrophoretic "high pK" fraction was chromatographed in solvent B. The chromatograms were cut into 1-cm strips and counted in toluene containing Omnifluor (14.7 g/3 1. of toluene) in a Beckman liquid scintillation counter. Double arrows indicate the positions of ultraviolet absorbing internal markers.

typical experiment, of the reaction of cytidine with [$^{1}4$ C]-EtMeSO₃. N^{4} -Ethylcytidine and N^{4} , N^{4} -diethylcytidine (from the "low pK" region of electrophoresis) are well resolved in solvent B (Figure 6A). Similarly, 3-ethylcytidine and an unknown derivative X (from the "high pK" region of electrophoresis) are resolved (Figure 6B). While the reaction of cytidine with either EtMeSO₃ or Et₂SO₄ yields approximately the same amounts of N^{4} -ethylcytidine, reaction with EtMeSO₃ produced more N^{4} , N^{4} -diethylcytidine than that with Et₂SO₄ (Table IV). The major product of high pK is 3-ethylcytidine. The other product of high pK differed chromatographically in solvent B from 3, N^{4} -diethyl-, 3, N^{4} , N^{4} -triethylcytidine, and 3-ethyluridine. However it was coincident with one of the three unidentified products (X) obtained when cytidine was

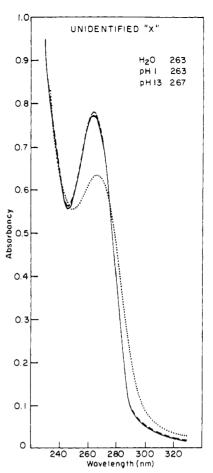


FIGURE 7: Ultraviolet absorption spectra of unidentified ethylcytidine "X" in water (—), 0.1 N HCl (--), and 0.1 N KOH (....). The absorption maximum at each pH is given in the figure.

reacted with excess ethyl iodide in either aqueous or anhydrous neutral solution. This unidentified product, not found after reaction with methyl iodide, has a distinctive ultraviolet absorption spectrum, as shown in Figure 7. Its R_F is also give in Table I. The high pK (pK > 5.7) excludes its being 3-ethyluridine or any other uridine derivative and its spectrum and pK exclude derivatives alkylated solely on the 5 or 6 positions. No data have been found for O^2 -alkylcytidine and the possibility remains that X may be alkylated on this site.

The radioactivity profile of the chromatographed enzyme digest from the reaction of poly(C) with [14C]EtMeSO3 without prior electrophoresis is shown in Figure 8. All four products (3; X; N4; and N4,N4) are well separated. Because of the low reactivity of the polymer a large excess of reagent was used. The monosubstituted derivatives (3 and N4) can, in this case, further react to give increased amounts of disubstituted derivatives, so that relatively less N⁴-cytidine was found and more N^4 , N^4 -diethylcytidine than shown in the profiles of the reaction of cytidine with the same reagents (Figure 6). Similarly, a comparison of the products of the reaction of cytidine and poly(C) with [14C]Et₂SO₄ shows more N^4 , N^4 -diethylcytidine formed in poly(C) (Table IV). With either reagent acting on cytidine, poly(C), or poly(dG). poly(dC), N⁴-ethylcytidine was found in addition to the major product, 3-ethylcytidine. Approximately 14-18% of the total ethylation of cytidine in poly(C) was on the exocyclic amino group (Table IV), a higher proportion than found after reaction with ethyl iodide in neutral dimethyl sulfoxide. The extent of ethylation by [14C]Et₂SO₄ or [14C]EtMeSO₃ was between 0.3 and 0.5% as calculated by specific radioactivity

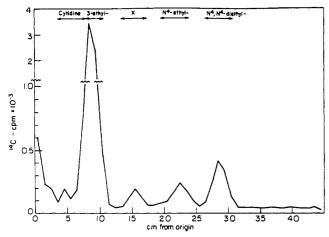


FIGURE 8: Radioactivity profile of a chromatogram of poly(C) reacted with [14C]EtMeSO₃. See text for experimental details. One-third of the sample, after repeated alcohol precipitation, was enzyme digested to nucleosides and chromatographed in solvent B. Double arrows indicate the positions of ultraviolet-absorbing internal markers. Radioactivity was determined as in Figure 6.

while the reaction with ethyl iodide was about 50%. Thus, even when little cytidine was ethylated, the N⁴ position was substituted.

Poly(dG) poly(dC) was reacted with [¹⁴C]EtMeSO₃ and, after depurination to remove both alkylated and nonalkylated guanine residues, the remaining poly(dC) chain was enzyme digested. There was very little alkylation of C compared to that of G (0.2% of the total). However of the radioactivity due to C-ethylation almost half was coincident with the N⁴-ethyldeoxycytidine marker. It was previously shown by us that in poly(G) poly(C) the methylation of the 3 position of cytidine is largely suppressed due to its involvement in hydrogen bondings (Singer and Fraenkel-Conrat, 1969a). However, it now appears that the N⁴ position is reactive toward ethylating agents.

Identification of Ethylcytidines. The identification of 3ethylcytidine (and 3-ethyldeoxycytidine) was based on its almost identical properties when compared to authentic 3methylcytidine in the following respects: (1) uv spectrum of the nucleoside (Figure 1); of the base obtained by perchloric acid digestion; and of the ethyluridine obtained by deamination (Table III); (2) pK_a of 8.4 (Table II) in agreement with previous values of 8.3-8.9 for 3-methylcytidine (Brookes and Lawley, 1962; Szer and Shugar, 1966; Hall, 1971). The chromatographic behavior in solvents containing borate, which distinguishes base alkylation from ribose alkylation (Al-Arif and Sporn, 1972), showed that no ribose alkylation had occurred. Nitrous acid deamination further showed that this compound possessed a free primary amino group, thus not being additionally N⁴ ethylated. Neither 3-ethyl- nor 3methylcytidine was deaminated with HNO2 to 3-alkyluridine as rapidly as cytidine was deaminated to uridine.

The identification of aminoethylated cytidines, possibly the most unexpected result of ethylation under our conditions, was based on the following considerations. The spectra of our presumed N^4 -ethyl- and N^4 , N^4 -diethylcytidines (Figures 2 and 4) corresponded to the published spectra for the synthetic methyl derivatives (Szer and Shugar, 1966; Wempen *et al.*, 1961) (Table III). The spectrum of N^4 -ethylcytosine, the product of perchloric acid digestion of the nucleoside, is very similar to that of authentic N^4 -methylcytosine (Szer and Shugar, 1966) (Table III). It can be noted that the λ_{max} and λ_{min} of N^4 -methylcytidine is almost indistingiushable from that of

TABLE IV: Distribution of Ethylated Cytidines Found after Reaction with [14C]Ethyl Methanesulfonate or [14C]Diethyl Sulfate at Neutrality.

Cytidine Derivatives	% Total Ethylation ^a					
	Cytidine, EtMeSO ₃		Poly(C), EtMeSO ₃	Poly(C), Et ₂ SO ₄		
3-Ethyl-	69	69	78	82		
Unknown X	18	20	4	4		
N⁴-Ethyl-	9	1 1	7	1		
N^4 , N^4 -Diethyl-	4	1	11	13		

^a The total ethylation of cytidine, as monomer or polymer, is between 0.3 and 0.5% as calculated from the specific radioactivity. See Experimental Section for conditions of reaction of cytidine and poly(C) with [¹⁴C]EtMeSO₃ and Et₂SO₄.

cytidine (and the same is true for N^4 -methylcytosine and cytosine). However our compound can not be unreacted cytidine since it is labeled in experiments with [14 C]EtMeSO₃ or [14 C]Et₂SO₄ and moreover differs in R_F from cytidine in three solvent systems (Table I). The compound was not a ribose alkyl derivative on the basis of its chromatography in a borate containing solvent. Lastly, substitution of the amino group was verified by the fact that it was not deaminated after nitrous acid treatment. Nitrous acid however caused the formation of small amounts of other products, possibly nitroso compounds.

When N^4 -ethylcytidine was further ethylated with ethyl iodide (see Experimental Section) one of the products, of pK < 5.7 (thus lacking a quaternary nitrogen) not found as a product of further alkylation of 3-alkylcytidine, corresponds in spectrum and chromatographic behavior to the N^4 , N^4 -diethylcytidine separately isolated from the reaction of cytidine with the various ethylating agents.

The assignment of the structure, $3,N^4$ -dialkylcytidine, is based on the fact that it is a product from the further ethylation of N^4 -ethylcytidine and has a quaternary nitrogen (pK > 5.7) showing that substitution of the 3 position has occurred. It is also, as expected, a product of further alkylation of 3-alkylcytidine. Its spectrum (Figure 3) is in accord with the limited data available for $3,N^4$ -di(2-diethylaminoethyl)deoxycytidine and $1,3,N^4$ -trimethylcytosine (Price et al., 1968) (Table III). A very minor product, also quaternary, of the ethylation of either 3-alkylcytidine or N^4 -ethylcytidine was presumed to be $3,N^4,N^4$ -trialkylcytidine. Its spectrum is shown in Figure 5. No comparative spectral data have been found.

Discussion

Cytidine was directly alkylated to an appreciable extent on the exocyclic N^4 -amino group when reacted with a stoichiometric amount of ethyl iodide in either alkaline or neutral dimethyl sulfoxide. Under the same conditions there was no detectable N^4 -methylation with methyl iodide. However a large excess of methyl iodide for long reaction times did lead to the formation of small amounts of $3,N^4$ -dimethylcytidine and possibly $3,N^4,N^4$ -trimethylcytidine. Thus, we are dealing with a matter of relative rates of alkylation of the 3 and N^4 positions, rather than absolute differing specificities of ethyl iodide and methyl iodide.

Previously N⁴-methylation or ethylation of cytidine with alkyl iodides or alkyl sulfates has been found only under

strongly alkaline conditions primarily favoring ribose alkylation (Kuśmierek and Shugar, 1971; Kuśmierek et al., 1973; Giziewicz and Shugar, 1973), or after exhaustive treatment with diazomethane (Szer and Shugar, 1966). Our usual anhydrous reaction in the presence of K₂CO₃ (room temperature, 4 hr) yielded little, if any, ribose alkyl derivatives although under aqueous alkaline conditions where an N4-methylcytidine has been found, the major product was 2'-O-methylcytidine (Tazawa et al., 1972) or other mono-, di-, or tri-O'alkylcytidines (Kusmierek et al., 1973). Moreover, N4-ethylcytidine was also found in neutral anhydrous solution, although to a lesser extent. One other instance of N⁴ substitution is reported by Price et al. (1968) who, on extensive neutral reaction of deoxycytidine with morpholine mustard (10-fold excess of reagent, 40° , 48 hr), found the $3,N^4$ -dialkyl derivative as a minor product.

Ethylation of cytidine, as monomer or polymer, with both Et₂SO₄ and EtMeSO₃ in neutral aqueous solution was slow and the total extent in our experiments was 0.3-0.5% in contrast to 20-100% reaction obtained with the anhydrous alkyl iodides. Surprisingly, at such low levels of reaction both Et₂SO₄ and EtMeSO₃ ethylated the N⁴ position to a greater proportion than did ethyl iodide in neutral anhydrous solution. In cytidine and poly(C) reacted with Et₂SO₃ and EtMe- SO_3 , 12–18% of the total ethylation was found as N^4 -ethylcytidine and N^4 , N^4 -diethylcytidine. No 3, N^4 -diethyl- or 3,- N^4 , N^4 -triethylcytidine was detected although these derivatives were products of the extensive reaction of cytidine with ethyl iodide. It should be pointed out that N⁴-ethylation of cytidine is, under all conditions, much lower than 3-ethylation and that 3-alkylcytidine is not readily alkylated at N⁴ by alkyl iodides. The preferred site of reaction is the 3 position, followed by reaction at the exocyclic amino group which is then dialkylated to N4,N4 more readily than is 3-alkylcytidine further alkylated to the 3,N4 derivative. One might then make the assumption that the quaternary structure of 3-ethylcytidine, leading to a pK of 8.4, diminishes the reactivity of the exocyclic amino group.

The possibility that the aminoethylation was due to a rearrangement of 3-alkylcytidine was considered. Ueda and Fox (1964) found a rearrangement of 3-methylcytosine to N^4 -methylcytosine in acetic anhydride involving acetylation of both the 1 and N^4 positions. However Kuśmierek and Shugar (1971) exclude rearrangement in alkali since they obtain an N^4 , N^4 -dialkylated cytosine with dimethyl sulfate in 10 N NaOH. In our experiments we have found 3-alkylcytidine to be unchanged after incubation in dimethyl sulfoxide containing K_2CO_3 , conditions under which, in the presence of ethyl iodide, about 20% of ethylation is on the amino groups of cytidine.

The reactivity of cytidine in $poly(dG) \cdot poly(dC)$ is extremely low compared to poly(C). However, in line with expectation, relatively more N^4 -ethylation occurred, amounting to half the alkylation, the rest being 3-ethylation. The fact that the amino group of cytosine reacts with ethylating agents at neutrality to a significant extent has not previously been recognized. Similar reactivity of the exocyclic amino group of adenosine has also recently been reported (Singer *et al.*, 1974).

Since poly(C) and poly(dG)·poly(dC) can be considered as models for cytidine in biological systems we can examine the possible biological consequences of N⁴-ethylation. It has previously been shown that the mutagenicity of the 3-methylation of cytidine could be demonstrated both biologically, in TMV, and by the *in vitro* template activity of copolymers of cytidine

and 3-methylcytidine (Singer and Fraenkel-Conrat, 1969b). Similar template studies have not yet been performed with cytidine polymers containing N⁴-substituted cytidine residues. However the binding studies of Brimacombe and Reese (1966) suggest, in support of what might be surmised on chemical grounds, that N^4 -methylcytosine residues do not represent obvious mutagenic events, but that N^4 , N^4 -dimethylcytosine residues are unable to bind to G or I residues and might thus resemble the 3-alkylated cytosine residues in allowing the incorporation of any base. However, we find no significant differences in the extent of N4-ethylation in cytidine and poly(C) by Et₂SO₄ and EtMeSO₅, while finding a significant difference in their mutagenicity toward TMV and TMV-RNA (Singer and Fraenkel-Conrat, 1969c). It is not excluded by these data that EtMeSO₃ and Et₂SO₄ could differ in their reactivity toward the exocyclic amino group of cytidine in TMV-RNA, accounting for the observed difference in biological effect.

Acknowledgment

The authors are grateful to Dr. H. Fraenkel-Conrat for his interest and advice throughout these investigations.

References

Al-Arif, A., and Sporn, M. B. (1972), Anal. Biochem. 48, 386.Brimacombe, R. L. C., and Reese, C. B. (1966), J. Mol. Biol. 18, 529.

Brookes, P., Dipple, A., and Lawley, P. D. (1968), *J. Chem. Soc. C*, 2026.

Brookes, P., and Lawley, P. D. (1962), J. Chem. Soc., 1348. Craddock, V. M. (1973), Biochim. Biophys. Acta 312, 202. Giziewicz, J., and Shugar, D. (1973), Acta Biochim. Polon. 20, 73.

Goth, R., and Rajewsky, M. F. (1972), Cancer Res. 32, 1501.
Hall, R. H. (1971), The Modified Nucleosides in Nucleic Acids, New York, N. Y., Columbia University Press.

Kleihues, P., and Magee, P. N. (1973), J. Neurochem. 20, 595.

Kuśmierek, J. T., Giziewicz, J., and Shugar, D. (1973), Biochemistry 12, 194.

Kuśmierek, J. T., and Shugar, D. (1971), Acta Biochim. Polon. 18, 413.

Lijinsky, W., Garcia, H., Keefer, L., Loo, J., and Ross, A. E. (1972), Cancer Res. 32, 893.

Loveless, A., and Hampton, C. L. (1969), *Mutation Res.* 7, 1. Ludlum, D. B. (1970), *Biochim. Biophys. Acta* 213, 142.

Ludlum, D. B., and Magee, P. N. (1972), Biochem. J. 128, 729.Price, C. C., Gaucher, G. M., Loneru, P., Shibakawa, R., Sowa, J. R., and Yamaguchi, M. (1968), Biochim. Biophys. Acta 166, 327.

Robins, M. J., and Naik, S. R. (1971), *Biochemistry* 10, 3591-3597.

Singer, B. (1972), Biochemistry 11, 3939.

Singer, B., and Fraenkel-Conrat, H. (1969a), *Biochemistry* 8, 3260.

Singer, B., and Fraenkel-Conrat, H. (1969b), *Biochemistry* 8, 3266.

Singer, B., and Fraenkel-Conrat, H. (1969c), Virology 39, 395. Singer, B., and Fraenkel-Conrat, H. (1970), Biochemistry 9, 3604

Singer, B., Sun, L., and Fraenkel-Conrat, H. (1974), Biochemistry 13, 1913.

Swann, P. F., and Magee, P. N. (1968), Biochem. J. 110, 39.

Swann, P. F., and Magee, P. N. (1969), *Nature (London) 223*, 947.

Swann, P. F., and Magee, P. N. (1971), Biochem. J. 125, 841.Szer, W., and Shugar, D. (1966), Acta Biochim. Polon. 13, 177.

Tazawa, I., Tazawa, S., Alderfer, J. L., and Ts'o, P. O. P. (1972), *Biochemistry 11*, 4931-4937.

Ueda, T., and Fox, J. J. (1964), J. Org. Chem. 29, 1770.

Wempen, I., Duschinsky, R., Kaplan, L., and Fox, J. J. (1961), J. Amer. Chem. Soc. 83, 4755-4766.

Reaction of Adenosine with Ethylating Agents†

B. Singer,* L. Sun, and H. Fraenkel-Conrat

ABSTRACT: The products of ethylation of adenosine with diethyl sulfate and ethyl methanesulfonate in neutral aqueous solution are 1-ethyladenosine, N⁶-ethyladenosine, and 7-ethyladenosine. In addition, lesser amounts of unidentified compounds are found which may be degradation products of 3-ethyladenosine. Reaction with anhydrous ethyl iodide or with methylating agents alkylates the 1 and 7 positions but not the exocyclic amino group. The new finding that up to half of the total ethylation was direct substitution of the N⁶ position is paralleled by the recent finding that cytidine is also directly ethylated at the N⁴ position (Sun, L., and Singer, B. (1974), Biochemistry 13, 1905). 7-Ethyladenosine and N⁶,7-dialkyladenosine (obtained from the alkylation of N⁶-methyladenosine) were isolated and characterized for the first time.

They are both brightly fluorescent under ultraviolet light and the imidazole ring is rapidly opened in neutral or alkaline solution. The relative amount of 7-alkylation by both ethylating and methylating agents is higher than previously reported and it is suggested that the great lability of 7-alkyladenosine, like that of 3-alkyladenosine, has led to erroneously low values for alkylation at these sites. The extent of ethylation of poly(A) and poly(A) poly(U) was extremely low and even the use of ¹⁴C-labeled reagents did not permit detection of the products of their reaction with poly(A) poly(U). N⁶-Ethyladenine and a lesser amount of 3-ethyladenine were identified as products of the reaction of [¹⁴C]diethyl sulfate and [¹⁴C]ethyl methanesulfate with poly(A), although the presence of other products was not excluded.

denosine, guanosine, and cytidine are the three nucleosides generally alkylated by mutagenic or carcinogenic alkylating agents. In order to understand the mechanism of the biological effect of alkylation on RNA and DNA, and particularly the differing effects of their methylation and ethylation, we have first isolated and characterized the products of ethylation of nucleosides by reagents such as ethyl iodide, diethyl sulfate, methyl methanesulfonate, and ethyl methanesulfonate. The products of ethylation of guanosine and cytidine have been discussed in the previous two papers (Singer, 1972; Sun and Singer, 1974). This paper deals with the isolation and characterization of various methyl- and ethyladenosines after reacting adenosine with ethyl iodide, diethyl sulfate (Et₂SO₄), dimethyl sulfate (Me₂SO₄), methyl methanesulfonate (MeMeSO₃), and ethyl methanesulfonate (EtMeSO₃).

No ethyladenosines have thus far been characterized, although some ethyladenines have been described, either obtained directly from the reaction of EtMeSO₃ with adenine (Pal, 1962), or from neutral hydrolysis of diethyl sulfate treated DNA (Lawley and Brookes, 1964), or ethyl methanesulfonate treated deoxyadenosine, yeast RNA, salmon sperm DNA, T2 phage DNA (Lawley and Brookes, 1963), and poly(A) (Ludlum, 1969). These include 1-ethyl-, 3-ethyl-, 7-ethyl-, and 9-ethyladenine. In addition N⁶-ethyl- and N⁶,N⁶-diethyladenine have been synthesized by Elion *et al.* (1952).

The literature on methylation of adenine, adenosine and nucleic acids is extensive and many mono-, di-, and trimethyl derivatives have been either isolated from direct methylation or synthesized. There are two expected derivatives which have been described only as the base, not as the nucleoside. These are the 3- and 7-substituted adenines, predicted to be labile as the nucleoside (Leonard *et al.*, 1965).

The present paper presents data on the isolation and characterization of 1-ethyladenosine, N^6 -ethyladenosine, 7-ethyladenosine, and N^6 ,7-dialkyladenosine and makes some comparisons of the relative reactivities of the 1, 3, N^6 , and 7 positions of adenosine toward dimethyl sulfate, diethyl sulfate, and ethyl methanesulfonate.

Experimental Section

Reaction of Adenosine with Dimethyl Sulfate, Diethyl Sulfate, Methyl Methanesulfonate, and Ethyl Methanesulfonate. Several sets of conditions were used, depending on the purpose of the experiment. To obtain markers for experiments using ¹⁴C-labeled reagents, 500 mg of adenosine in 6 ml of 0.4 m ammonium bicarbonate or pH 7.2 cacodylate buffer were reacted with 0.2 ml of Et₂SO₄ or EtMeSO₃ at 30°. After 8-hr stirring, 2.5 ml of ammonium bicarbonate or pH 7.2 cacodylate buffer and 0.1 ml of Et₂SO₄ or EtMeSO₃ were added and stirring was continued 18 hr. The final pH of these reaction mixtures was pH 3-4.

To compare the reaction products of the neutral reaction of Me₂SO₄ and Et₂SO₄ with adenosine at room temperature, 50 mg of adenosine in 2 ml of H₂O was adjusted to pH 7.0 in a Radiometer pH-Stat; 20 μ l of Me₂SO₄ or Et₂SO₄ was added and the pH was maintained at 7.0 with 1 N NaOH. After 5 hr

[†] From the Space Sciences Laboratory and Department of Molecular Biology and Virus Laboratory, University of California, Berkeley, California 94720. Received October 15, 1973. This investigation was supported by Grant No. CA 12316 from the National Cancer Institute and Grant No. 32367 from the National Science Foundation.